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Today's Lecture

Finish Sharp RDD
Non-linearities
Interpreting results

Start Fuzzy RDD
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The key question to identify causality, is
whether relationship between running
variable and outcome is well represented
by a linear control on age.
Two approaches to reduce the likelihood
of mistakes when modeling this
relationship: (i) modeling non-linear
relationships, and (ii) focusing only on
data around the cut-off. We will spend
most of the time in (i).
In addition to logs, non-linearities can be
modeled with two additional tools:
polynomials and interactions.

But Is There a Jump?
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Modeling Non-Linear Relationships: Polynomials

Curves are usually modeled using polynomials (powers of the regressors).
Higher polynomials (higher powers) introduce more flexibility but they are also
likely to hide a disconitinuity when there is one.
The choice of how much more flexibility is enough is a judgment call.
Ideally the results should not vary much as you add higher order polynomials
(powers of 3, 4 or more).
In our example there might be a small curvature in the data, so we add a
quadratic term for the running variable:

We are not interested interpreting the effect of age, only on controlling for any
non-linear behaviour.

¯̄¯̄¯̄
M a = α + ρDa + γ1a + γ2a2 + ea
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Modeling Non-Linear Relationships: Interactions 1/3

An interaction is defined as the multiplication of two regressors. Where typically
one is a binary regressor.

Adding an interaction in any regression (or any equation) is a way of capturing
changes in (regression) coefficients change for certain groups.

Example with just a constant
Example with constant and slope
Example with both.

In here we add an interaction and standardize the running variable, so  can
continue to be interpreted as the difference of average outcomes at the cutoff.

rho
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Modeling Non-Linear Relationships: Interactions 2/3

The standardization part might add some confusion, so first let's focus only on
adding the interaction to capture a potential shift in the slope that connects age 

 with mortality rates :

The goal of the standardization is to have an easy interpretation of  as the
difference of mortality around the cut-off. We could define the a new variable 

 which would represent the standardized age . This would give
us the regression:

(a) (
¯̄¯̄¯̄
M a)

¯̄¯̄¯̄
M a = α + ρDa + γa + δa × Da + ea

ρ

ã = a − 21 (a − 21)

¯̄¯̄¯̄
M a = α + ρDa + γã + δã × Da + ea
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Modeling Non-Linear Relationships: Interactions 3/3

A more generic version would allow for the cut-off to be any number so instead of
21, put . Giving us the standardized formulation of the book:

The most important part here is understanding the interactions, if you find the
standardization distracting, focus on the first two equations but make sure to
remember that "we standardize to be able to interpret  as the treatment effect"

(If we want to extrapolate effects awway from the cut-off, we need to be aware that
the treatment effect is )

a0

¯̄¯̄¯̄
M a = α + ρDa + γ(a − a0) + δ(a − a0) × Da + ea

ρ

ρ + δ(a − a0)
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Non-Linear Relationships: Interactions And Polynomials

Here are polynomials:

¯̄¯̄¯̄
M a = α + ρDa + γ1a + γ2a2 + ea
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Non-Linear Relationships: Interactions And Polynomials

Here are polynomials:

Here are interactions:

¯̄¯̄¯̄
M a = α + ρDa + γ1a + γ2a2 + ea

¯̄¯̄¯̄
M a = α + ρDa + γ(a − a0) + δ(a − a0) × Da + ea
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Non-Linear Relationships: Interactions And Polynomials

Here are polynomials:

Here are interactions:

Here are combined:

We can now capture curvature and changing slopes in the relationship between  and ,
reducing the risk that we incorrectly find a discontinuity where there is none (figure 4.3-C).

¯̄¯̄¯̄
M a = α + ρDa + γ1a + γ2a2 + ea

¯̄¯̄¯̄
M a = α + ρDa + γ(a − a0) + δ(a − a0) × Da + ea

¯̄¯̄¯̄
M a = α + ρDa + γ1(a − a0) + γ2(a − a0)2 +

δ1 [(a − a0)Da] + δ2 [(a − a0)2Da] + ea

a (
¯̄¯̄¯̄
M a)
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Effect of 21st birthday seems robust
to this new specifications.

Effect also persist substantially up to
the 23rd birthday suggesting lasting
effects.

This last point demonstrates the
value of a visual inspection of RDD
estimates.

The Result
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Now All in One Table
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Now All in One Table
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Now All in One Table
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Non-Paramteric RDD

The second way in which can handle non-linearities is by removing parametrical
assumptions (about the slopes and how they change).
This involves either taking simple averages, or computing linear regressions but
only arround on a narrow bandiwth around the cut-off.
This approach does not have the problems trying to get the relationship between 
 and  right, but it discard a large amount of data (information).

The main challenge is how to choose the bandwidth to balance the trade of
between bias (incorrectly attributing discontinuities) and variance (due to smaller
sample size). The choice of this bandwidth is a judgement call, and results should
not rely on one specific choice.
It also has several "fancy" (more complex) methodological challenges that we
ignore for now.

a (
¯̄¯̄¯̄
M a)
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Fuzzy RDDFuzzy RDD

(Same content as MM 4.2, but different order)(Same content as MM 4.2, but different order)
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Policy Question: Effect of High Performing Peers on Math Scores? 1/2

More specifically: Do students that attend the best exam school in Boston (Boston
Latin School, or BLS) perform better because of having better performing peers?
This potential effect is known as "peer effect" in the (academic) literature.

Outcome : Math Score in 7th and 8th Grade (1 or 2 years after entering the
exam school). Standardized.

Treatment : Average score of peers before entering the exam school (4th
grade). Proxy measure of peer quality.
Running Variable : Score in entrance exam, measured as distance to BLS cut-
off threshold.
Discontinuity: Crossing the eligibility threshold in entrance exame for elite school
in Boston (BLS).

(Yi)

(
¯̄̄ ¯̄
X (i))

(Ri)
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Policy Question: Effect of High Performing Peers on Math Scores? 2/2

Regression:

OLS Regression estimates for 

Selection problem: these schools are by definition selecting the best students, so
comparisons between peers in exam school versus the rest will be contaminated
by selection bias.

Let's use RDD to address this selection bias problem.

Yi = θ0 + θ1
¯̄̄ ¯̄
X (i) + θ2Xi + ui

θ1 = 0.25
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Let's start with a discontinuity.

Enrollment to BLS and distance from
exam cut-off

This is not the discontinuity will end
up focusing on, but it helps to
illustrate the concept of Fuzzy RDD
and how it connects with the notion
of compliance.

Fuzzy RDD is IV
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Now let's switch to figure 4.8, which
shows the treatment we care about
(peer effects) as a function of the
running variable.
(compliers here are harder to
describe: “those with peers who
notably improve their performance
after crossing the BLS threshold”)
The instrument here is defined as
the variable that captures crossing
the threshold.

Fuzzy RDD is IV in Peer Effect Example 1/3
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Beware of confusions: in sharp RDD
this variable represents the
treatment, in fuzzy represents the
instrument (akin to the offers in KIPP
and OHP examples).
To add to the confusion the
instrument here is labeled as 
(instead of )
If this is the instrument, what is the
first stage?

Fuzzy RDD is IV in Peer Effect Example 2/3

Di

Zi
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Fuzzy RDD is IV in Peer Effect Example 3/3

First Stage:

Reduced Form:

¯̄̄ ¯̄
X (i) = α1 + ϕDi + β1Ri + e1i
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Fuzzy RDD is IV in Peer Effect Example 3/3

First Stage:

Reduced Form:

Second Stage (for 2SLS):

¯̄̄ ¯̄
X (i) = α1 + ϕDi + β1Ri + e1i

Yi = α0 + ρDi + β0Ri + e0i
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Fuzzy RDD is IV in Peer Effect Example 3/3

First Stage:

Reduced Form:

Second Stage (for 2SLS):

¯̄̄ ¯̄
X (i) = α1 + ϕDi + β1Ri + e1i

Yi = α0 + ρDi + β0Ri + e0i

Yi = α2 + λ
¯̂̄̄ ¯̄
X (i) + β2Ri + e2i
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IV Assumptions
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IV Assumptions

Relevancy: See figure 4.8. Effect of

instrument on treatment is an increase

in  (very big)0.8σ
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IV Assumptions

Relevancy: See figure 4.8. Effect of

instrument on treatment is an increase

in  (very big)

Independence: Yes for the same reason

that Sharp RDD does not have OVB:
Instrument is a deterministic function

of a running variable.

0.8σ
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IV Assumptions

Relevancy: See figure 4.8. Effect of

instrument on treatment is an increase

in  (very big)

Independence: Yes for the same reason

that Sharp RDD does not have OVB:
Instrument is a deterministic function

of a running variable.

Exclusion (Restriction): the cut-off

variable (instrument) is influencing the math

scores (outcome) only through peer quality

(treatment). There are probably other channels,

so this assumption probably doesn’t hold.

0.8σ
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Results

First Stage: 

(no SE reported). Strong first stage.

ϕ = 0.8
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Results

First Stage: 

(no SE reported). Strong first stage.

Reduced Form: 

(SE = ). Statistical zero.

ϕ = 0.8

ρ = −0.02

0.1
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Results

First Stage: 

(no SE reported). Strong first stage.

Reduced Form: 

(SE = ). Statistical zero.

2SLS LATE: 

(SE = ). Zero again.

OLS: 

(no SE reported). Strong positvie "effect"

ϕ = 0.8

ρ = −0.02

0.1

λ = −0.023

0.132

θ1 = 0.25
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Back to the Exclusion Restriction

We saw that the exclusion assumption probably doesn't hold, so why bother with
the estimation?

The key is that the reduce form has zero effect.

Whatever other channels (of the same instrument) will be captured in the reduce
form.

So no effect in the reduce form for this instrument, means no effect for any
treatment/channel this instrument is instrumenting.

Additionally, the an OVB analysis of the OLS estimates shows us that most (all?)
potentially omitted variables produce  (practice question for the exam!).OV B > 0
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RDD: Final Considerations 1/2

Visual inspection of RDD estimates are important but remember to keep an eye on
the range of the y-axis

Notice here that we cannot interpret the result of regression as a matched group,
because we do not have individuals in the same cell (say age 20) with both
treatment and control. The validity of RDD depends on our willingness to
extrapolate across the running variable, at least around a narrow neighborhood
around the cut-off.

This extrapolation limits the policy questions that can be answered with RDD
evidence. RDD can answer questions about changes in the margin (from 21 to 22 or
19) but not complete rearrangements of a policy (prohibiting or eliminating
restrictions completely). 24 / 26



RDD: Final Considerations 2/2

There is one important assumption for RDD that MM does not discuss, and it is
pretty important (but I will not test you on it): RDD works as long as the threshold
cannot be manipulated. This means that individuals cannot place themselves on
either side of the threshold at will. This probably can be connected to the
exclusion restriction, but requires a deeper dive into Fuzzy RDD. For those
interested in more RDD I suggest following up this class from Andrew Heiss.

25 / 26

https://evalsp22.classes.andrewheiss.com/content/12-content/
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