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Housekeeping

Midterm 2 Grades Wednesday.
Midterm 2 Solutions: Today.
Practice questions for new material: collection of reading comprehension
questions at the end of each chapter (will post IV today).
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Combining IV and Regression: 2SlS

Two reasons to combine IV with regression:

1. Sometimes we might have more than one instrument and combining them in
one regression improves statistical precision (because of a smaller variance in
the residual).

2. Our instruments might not be "as-good-as-random" but might achieve
independence after controlling for a few observable characteristics (e.g. age of
the mother in case of the twins instrument).

The procedure that combines regression and IV is called Two Stage Least Squares
(2SLS)
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First Stage and Reduce Form in Regression

For the case of a binary instrument, we can write the first stage and reduce form
as the following regression (end of lecture on CEF):

Where we can evaluate each conditional expectation from the previous
formulation (of FS and RF) and obtain:

Where  is the ratio the slopes of both regressions.
2SLS offers an alternative way of computing this ratio (and getting the SEs right!)

THE FIRST STAGE:  Di = α1 + ϕZi + e1i

THE REDUCED FORM:  Yi = α0 + ρZi + e0i

THE FIRST STAGE:  E[Di|Zi = 1] − E[Di|Zi = 0] = ϕ

THE REDUCED FORM:  E[Yi|Zi = 1] − E[Yi|Zi = 0] = ρ

LATE = λ
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2SLS Procedure

First step: estimate the regression equation for the first stage and generate fitted
values :

Second step: regress  on :

The regression estimate for  is identical to the ratio ! (proved in the
appendix of Ch3)

D̂ i

D̂ i = α1 + ϕZi

Yi D̂ i

Yi = α2 + λ2SLSD̂ i + e2i

λ2SLS ρ/ϕ
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2SLS With Multiple Regressors

Now that we have the regression setup ready, it is straight forward to add control.
The most important thing to remember is that you need to include the additional
controls in all the equations (otherwise we would be inducing a type of OVB).
Using the example of the additional control of maternal age, :

And in the 2SLS estimate:

2SLS gets the SEs right for  (more on appendix of Ch3).

Ai

THE FIRST STAGE:  Di = α1 + ϕZi + γ1Ai + e1i

THE REDUCED FORM:  Yi = α0 + ρZi + γ0Ai + e0i

FIRST STAGE FITS:  D̂ i = α1 + ϕZi + γ1Ai

SECOND STAGE:  Yi = α2 + λ2SLSD̂ i + γ2Ai + e2i
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2SLS With Multiple Instruments

In addition the twins instrument , we can add now the siblings gender
instrument. Let's label this last one  to avoid confusions. We can also bring the
additional controls (Age, , First born boy ) and get new first stage:

And the corresponding 2SLS estimation:

Ready to read results from most IV papers!

(Zi)

Wi

Ai Bi

FIRST STAGE:  Di = α1 + ϕtZi + ϕsWi + γ1Ai + δ1Bi + e1i

REDUCED FORM:  Yi = α0 + ρtZi + ρsWi + γ0Ai + δ0Bi + e0i

FIRST STAGE FITS:  D̂ i = α1 + ϕtZi + ϕsWi + γ1Ai + δ1Bi

SECOND STAGE:  Yi = α2 + λ2SLSD̂ i + γ2Ai + δ2Bi + e2i
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IV Results for Family Size and Education: First Stage
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IV Results for Family Size and Education: Second Stage + OLS
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IV Results for Family Size and Education: Second Stage + OLS
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IV - Final Considerations 1/2

Quick intuitions why SE of  are wrong if estimated with OLS:  is an
estimated variable that has more uncertainty that , we know that, but the
software doesn't. Hence it generates fictitiously small SEs (SE from 2SLS > SE from
OLS).
When assessing the relevance of one instrument use t-test as usual. When
assessing the relevance of multiple  instruments use a joint hypothesis test 

. The rule of thumb here is that the F-statistic reported for these
type of tests has to be greater than 10 (p-hacking alert!).
Beware of studies that are instrument driven ("I just found a new cool and clever
instrument! Now, which policy could I use this instrument for?") as oppose to
policy driven ("Policy X is of high relvance, let's look for IVs to identify its causal
effect").

λ2SLS D̂ i

Di

(K)

ϕ1 = ϕ2 = ϕK = 0
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When it comes to external validity
never forget that LATE is the effect
on compliers (MM constantly does!).

There is a twitter account that
emphasizes this extrapolation
problem in bio-medical sciences by
adding the proper caveat at the end
of each new flashy result:
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Regression Discontinuity DesignRegression Discontinuity Design

13 / 3313 / 33



Regression Discontinuity Design

Many policy decisions (interventions) are assign over the basis of strict rules. For
example:

California limits the elementary class size at 32.
The US federal pensions system (Social Security) starts providing pensions no
earlier than at age 62.
In order to qualify for certain government programs (e.g. Medicaid in California)
families must have an income below a specific threshold.

Even though these rules seem strict and the opposite of random assignment, we
can use them with our fourth research design tool, Regression Discontinuity
Design, to identify causal effects.
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Example: Minimum Legal Drinking Age in the US

Minimum legal drinking age (MLDA) in the US is 21. Is it too high (or too low)?

Advocates: of the current age limit of 21 years old: in some extend reduces
access to alcohol, hence preventing harm.

Opponents: reducing the drinking age to 18 could discourage binge drinking
and promotes a culture of mature alcohol consumption.
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Deaths and Distance from Birthdays
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Figure shows number of deaths among
Americans ages 20-22 between 1997 and 2003.
Plotted by day relative to the birthdays. So if
somebody was born on January 1st 1990, and
died on January 4th 2021, is counted among
the deaths of the 21 year old on day 3.
We will explore this potential effect using RDD
Spike of about 100 additional deaths per day
on the day following the 21st birthday. Over a
baseline of 150 deaths (before the spike)
Nothing similar around other close birthdays
(20th or 22nd). We still need to argue that this
age-21 effect can be attributed to the
Minimum legal drinking age (MLDA) and that it
lasts long enough to be worth worrying about.

Deaths and Distance from Birthdays. Notes
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Our RDD analysis will focus on these data:
Average monthly death rates
Months are defined as 30-day intervals,
centered around the 21st birthday.

There is monthly variation but rarely going
over 95 deaths per month before the 21st
birthday.
After the 21st birthday, there seems to be an
upward shift.
Also, looking at trends before and after the
shift, death rates seem to be decreasing with
age. Extrapolating, we should expect deaths
(without intervention, or  ) to be around 92
(per 100,000) right after the 21st birthdays.
They jump instead to around 100.

First Exploration of RDD

Y0i
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RDD Definitions

Treatment variable is , where 1 indicates crossing the legal drinking age (21)
and 0 otherwise.

Treatment status is a deterministic function of age 

Treatment status is a discontinuous function of .

The variable that determines treatment in RDD, age in this case, is called the
running variable.

In a Sharp RDD there is a clean switch from control to treatment after crossing a
threshold, nobody under the cutoff gets the treatment, and everybody after the

Da

(a)

a
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The Regression part of RDD

The outcome of average mortality for month of age   changes with the
running variable for reasons that have nothing to do with the treatment.
One way to control for this smooth relationship is to add it as a control in a
regression like the following:

Estimate of  7.7. Relative to baseline death rate of 95 (without the intervention)

Is there OVB here?

a (
¯̄¯̄¯̄
M a)

¯̄¯̄¯̄
M a = α + ρDa + γa + ea

ρ =
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The Regression part of RDD

The outcome of average mortality for month of age   changes with the
running variable for reasons that have nothing to do with the treatment.
One way to control for this smooth relationship is to add it as a control in a
regression like the following:

Estimate of  7.7. Relative to baseline death rate of 95 (without the intervention)

Is there OVB here?

Given that treatment is a deterministic function of the running variable we know
that there is nothing else that affects treatment (so  in the auxiliary OVB

a (
¯̄¯̄¯̄
M a)

¯̄¯̄¯̄
M a = α + ρDa + γa + ea

ρ =

π1 = 0
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The key question to identify causality, is
whether relationship between running
variable and outcome is well represented
by a linear control on age.
Two approaches to reduce the likelihood
of mistakes when modeling this
relationship: (i) modeling non-linear
relationships, and (ii) focusing only on
data around the cut-off. We will spend
most of the time in (i).
In addition to logs, non-linearities can be
modeled with two additional tools:
polynomials and interactions.

But Is There a Jump?
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Modeling Non-Linear Relationships: Polynomials

Curves are usually modeled using polynomials (powers of the regressors).
Higher polynomials (higher powers) introduce more flexibility but they are also
likely to hide a disconitinuity when there is one.
The choice of how much more flexibility is enough is a judgment call.
Ideally the results should not vary much as you add higher order polynomials
(powers of 3, 4 or more).
In our example there might be a small curvature in the data, so we add a
quadratic term for the running variable:

We are not interested interpreting the effect of age, only on controlling for any
non-linear behaviour.

¯̄¯̄¯̄
M a = α + ρDa + γ1a + γ2a2 + ea

22 / 33



Modeling Non-Linear Relationships: Interactions 1/3

An interaction is defined as the multiplication of two regressors. Where typically
one is a binary regressor.

Adding an interaction in any regression (or any equation) is a way of capturing
changes in (regression) coefficients change for certain groups.

Example with just a constant
Example with constant and slope
Example with both.

In here we add an interaction and standardize the running variable, so  can
continue to be interpreted as the difference of average outcomes at the cutoff.

rho
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Modeling Non-Linear Relationships: Interactions 2/3

The standardization part might add some confusion, so first let's focus only on
adding the interaction to capture a potential shift in the slope that connects age 

 with mortality rates :

The goal of the standardization is to have an easy interpretation of  as the
difference of mortality around the cut-off. We could define the a new variable 

 which would represent the standardized age . This would give
us the regression:

(a) (
¯̄¯̄¯̄
M a)

¯̄¯̄¯̄
M a = α + ρDa + γa + δa × Da + ea

ρ

ã = a − 21 (a − 21)

¯̄¯̄¯̄
M a = α + ρDa + γã + δã × Da + ea
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Modeling Non-Linear Relationships: Interactions 3/3

A more generic version would allow for the cut-off to be any number so instead of
21, put . Giving us the standardized formulation of the book:

The most important part here is understanding the interactions, if you find the
standardization distracting, focus on the first two equations but make sure to
remember that "we standardize to be able to interpret  as the treatment effect"

(If we want to extrapolate effects awway from the cut-off, we need to be aware that
the treatment effect is )

a0

¯̄¯̄¯̄
M a = α + ρDa + γ(a − a0) + δ(a − a0) × Da + ea

ρ

ρ + δ(a − a0)
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Non-Linear Relationships: Interactions And Polynomials

Here are polynomials:

¯̄¯̄¯̄
M a = α + ρDa + γ1a + γ2a2 + ea
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Non-Linear Relationships: Interactions And Polynomials

Here are polynomials:

Here are interactions:

¯̄¯̄¯̄
M a = α + ρDa + γ1a + γ2a2 + ea

¯̄¯̄¯̄
M a = α + ρDa + γ(a − a0) + δ(a − a0) × Da + ea
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Non-Linear Relationships: Interactions And Polynomials

Here are polynomials:

Here are interactions:

Here are combined:

We can now capture curvature and changing slopes in the relationship between  and ,
reducing the risk that we incorrectly find a discontinuity where there is none (figure 4.3-C).

¯̄¯̄¯̄
M a = α + ρDa + γ1a + γ2a2 + ea

¯̄¯̄¯̄
M a = α + ρDa + γ(a − a0) + δ(a − a0) × Da + ea

¯̄¯̄¯̄
M a = α + ρDa + γ1(a − a0) + γ2(a − a0)2 +

δ1 [(a − a0)Da] + δ2 [(a − a0)2Da] + ea

a (
¯̄¯̄¯̄
M a)
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Effect of 21st birthday seems robust
to this new specifications.

Effect also persist substantially up to
the 23rd birthday suggesting lasting
effects.

This last point demonstrate the value
of a visual inspection of RDD
estimates.

The Result
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Now All in One Table
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Now All in One Table
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Now All in One Table
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Non-Paramteric RDD

The second way in which can handle non-linearities is by removing parametrical
assumptions (about the slopes and how they change).
This involves either taking simple averages, or computing linear regressions but
only arround on a narrow bandiwth around the cut-off.
This approach does not have the problems trying to get the relationship between 
 and  right, but it discard a large amount of data (information).

The main challenge is how to choose the bandwidth to balance the trade of
between bias (incorrectly attributing discontinuities) and variance (due to smaller
sample size). The choice of this bandwidth is a judgement call, and results should
not rely on one specific choice.
It also has several "fancy" (more complex) methodological challenges that we
ignore for now.

a (
¯̄¯̄¯̄
M a)
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RDD: Final Considerations

Visual inspection of RDD estimates are important but remember to keep an eye on
the range of the y-axis
Notice here that we cannot interpret the result of regression as a matched group,
because we do not have individuals in the same cell (say age 20) with both
treatment and control. The validity of RDD depends on our willingness to
extrapolate across the running variable, at least around a narrow neighborhood
around the cut-off.
This extrapolation limits the policy questions that can be answered with RDD
evidence. RDD can answer questions about changes in the margin (from 21 to 22 or
19) but not complete rearrangements of a policy (prohibiting or eliminating
restrictions completely).

32 / 33



Acknowledgments

MM

33 / 33


