All Things Regression
Part Il

Fernando Hoces la Guardia
07/21/2022



Housekeeping

e Let's choose the chapter for the summary (still due Friday 5pm on gradescope)

e Practice questions are up. Midterm will follow similar questions (but not exactly
the same ones).

o Goal: If you understood the concepts behind the practice questions, you will do
well in the midterm.

e Switching the order of the review session: will do a review on Monday (before the
midterm), and on Wednesday we will start with new material. Bring questions! (I

will not bring new material, If we finish early we can watch the first part of Run
Lola Run)
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Regression Journey

e Regression as Matching on Groups. Ch2 of MM up to page 68 (not included).
e Regression as Line Fitting and Conditional Expectation. Ch2 of MM, Appendix.

e Multiple Regression and Omitted Variable Bias. Ch2 of MM pages 68-79 and
Appendix.

o All Things Regression: Anatomy, Inference, Logarithms, Binary Outcomes, and R?.
Ch2 of MM, Appendix + others.
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Today and Tomorrow's Lecture

Regression Anatomy

Regression Inference
o R?

Non-linearities:

o Logarithms
o Others

Binary Outcomes
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Analysis of Variance

e Remember thaty; = if;"— e;.
e We have the following decomposition

Var(Y) = Var(Y +e)
= Var(Y) + Var(e) + 2Cov(Y, e)
= Var(Y) + Var(e)

« Total variation (SST) = Model explained (SSE) + Unexplained (SSR)
e Because:

o Var(a: -+ y) — Var(zc) + Var(y) + 200’0(513, y)
o Cov(Y,e) = 014



Goodness of Fit

e The R? measures how well the model fits the data.
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In causal mechanisms, not prediction!
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Goodness of Fit

e The R? measures how well the model fits the data.

i lained SSE SSR
p2 _ variance exp _ 1 0.1
total variance SST SST < [0,1]

R? close to 1 indicates a very high explanatory power of the model.

R? close to 0 indicates a very low explanatory power of the model.

Interpretation: an R? of 0.5, for example, means that the variation in z "explains" 50% of the
variation in y.

I Low R? does NOT mean it's a useless model! Remember that econometrics is interested

In causal mechanisms, not prediction!

e /. The R? is NOT an indicator of whether a relationship is causal! 7/ 45



Non-linearities

8 [ 45




——

(Life Expectancy); = 53.96 + 8 x 10~* - GDP;
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Nonlinear Relationships

Erroneus critique of regression: "many economic relationships are nonlinear (e.g.,
most production functions, profit, diminishing marginal utility, tax revenue as a
function of the tax rate, etc.), hence fitting straight lines is a bad way of estimating

such relationships"”
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Nonlinear Relationships

Erroneus critique of regression: "many economic relationships are nonlinear (e.g.,

most production functions, profit, diminishing marginal utility, tax revenue as a
function of the tax rate, etc.), hence fitting straight lines is a bad way of estimating

such relationships"”

The flexibility of regression OLS estimation can accommodate many, but not all,
nonlinear relationships.

e Underlying model must be linear-in-parameters.

e Nonlinear transformations of variables are okay.
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Linear-in-parameters: Parameters enter model as a weighted sum, where the weights
are functions of the variables.

e This Is the one required to estimate OLS

Linear-in-variables: Variables enter the model as a weighted sum, where the weights
are functions of the parameters.

e This Is the one the critique was pointing at. OLS works perfectly here.
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Linear-in-parameters: Parameters enter model as a weighted sum, where the weights
are functions of the variables.

e This Is the one required to estimate OLS

Linear-in-variables: Variables enter the model as a weighted sum, where the weights
are functions of the parameters.

e This Is the one the critique was pointing at. OLS works perfectly here.

The standard linear regression model satisfies both properties:

Y; = Bo+ 81 X1 + BoXoj + -+ + Bp Xk + €
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Which of the following is linear-in-parameters, linear-in-variables, or neither?
LY, =80+ BiXi+ B X+ + BeXF + e

- P,
2. K — 50X2 €;

3.Y, = Bo + 182X, + e
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Which of the following is linear-in-parameters, linear-in-variables, or neither?
LY; =Bo+ BiXi + B X+ + B X[ + e

2.Y; = 50X7;51€z'

3.Y; = Bo + B152X; + €

Model 1 1s linear-in-parameters, but not linear-in-variables.
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Which of the following is linear-in-parameters, linear-in-variables, or neither?
1Y = Bo+ BiXi+ Bo X} + - + B X} + €

2.Y; = BoX, e

3.Y; = Bo + B1B2X; + €

Model 1 1s linear-in-parameters, but not linear-in-variables.

Model 2 is neither.

Model 3 Is linear-in-variables, but not linear-in-parameters.
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We're Going to Take Logs

The natural log Is the inverse function for the exponential function:
log(e®) =  for x > 0.

(Natural) Log Rules and Approximations

1. Product rule: log(AB) = log(A) + log(B).

2. Quotient rule: log(A/B) = log(A) — log(B).

3. Power rule: log(A®) = B -log(A).

4. log(e) =1, log(1) = 0, and log(x) is undefined for z < 0.

5. Approximation: log(1 + A) = A If Ais very small (~less than 0.2)
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Log-Linear Model

Nonlinear Model
Y, = aeﬂlX"ei

e Y > 0, X Iis continuous, and e; i1s @ multiplicative error term.
o Cannot estimate parameters with OLS directly.

Logarithmic Transformation
log(Y;) = log(a) + B1.X; + log(e;)
e Redefine log(a) = By and log(e;) = e;.

Transformed (Linear) Model

log(Y;) = Bo + 51X + e

e Can estimate with OLS, but coefficient interpretation changes.
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Log-Linear Model

log(Yi) = Bo + B1.Xi + e

Interpretation

e A one-unit increase In the explanatory variable increases the outcome variable by
approximately 8; x 100 percent, on average.

o Example: Iflog(Péyi) — 2.9 4+ 0.03 - School;, then an additional year of schooling
increases pay by approximately 3 percent, on average.
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o We want to know how to interpret what is the
associated increase in Y, when we increase X
In one unit.

log(Y;) = Bo + 51X + e
log(Y;) = Bo + B1(Xi +1) + e
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o We want to know how to interpret what is the

assoclated increase in Y, when we increase X .
In one unit.

Comparing log(1+X) with X

log(Y;) = Bo + f1.Xi + e

log(¥;) = Bo + B1(X; +1) + e 2025
log(Y;) — log(¥;) = Bo + B1X; + B + ei—
(Bo + B1X; + €;) e o
log(Y;) — log(Yi) = 6

0.50 0.75 1.00
X
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e We want to know how to interpret what is the Comparing log(1+X) with X
associated increase in Y, when we increase X e
In one unit. o
log(Y;) = Bo + B1.X; + e % 00

log(Y;) = Bo + Ai(Xi +1) + e
10~g(Yz) —log(Y;) = Bo + 51X + B1 + €;—

(Bo + B1Xi + €;) o i T i -
log(¥;) —log(¥;) = 61 X
log(Y;) = log(Y;) + b1 « A one-unitincrease in the explanatory
fc;:g(Y;) ~ log(Y;) + log(1 + 1) variable increases the outcome variable by
Eg,;(y;.) ~ log(Y;(1 + B1)) approximately 8; x 100 percent, on average.
Y, ~Yi(1+ B1) « What if By is large (>0.2)? No problem, just

divide X by 10, 100, or larger, to shrink the
units of fj. 16 / 45



(If X is Binary and B > 0.2: Use Exact)

log(Y;) = Bo + B1X; + e
log(Y;) = Bo + A1 (X; + 1) + e
log(Y;) — log(Y;) = Bo + B1Xi + B1 + ei—
(Bo + B1X; + ;)

Exact Approximation
log(Y;) — log(Y;) = B log(Y;) = log(Y;) + B1
log(Y,;/Y;) = b1 log(Y;) =~ log(Y;) + log(1 + f1)
Y;/Y; = e log(Y;) ~ log(Y;(1 + B1))
(Y;—Y;)/Yi=e’ —1From X =0to X = 1 Y, =2 Yi(1+ B)

Y;-Y)/)Yi=e” —1FromX =1to X =0

e If we cannot re-scale (x) to have a small (\beta) we need to compute the percentage difference using

the exact formula (left). Also, interpretation from 1to 0 does not work well in approximation.
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Log-Linear Example

A

log(Y;) = 10.02 + 0.73 - X,

5e+05 o
4e+05
3e+05
2e+05

le+05

0e+00
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Log-Linear Example

A

log(Y;) = 10.02 + 0.73 - X;

13

12

log(Y)
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Log-Log Model

Nonlinear Model
Y, = aXflei

e Y >0,X >0, and e; I1s a multiplicative error term.
e Cannot estimate parameters with OLS directly.

19 / 45



Log-Log Model

Nonlinear Model
Y, = aXflei

e Y >0,X >0, and e; I1s a multiplicative error term.
e Cannot estimate parameters with OLS directly.

Logarithmic Transformation
log(Y;) = log(a) + B1log(X;) + log(e;)

e Redefine log(a) = By and log(e;) = e;.

19 / 45



Log-Log Model

Nonlinear Model
Y, = aXflei

e Y >0,X >0, and e; I1s a multiplicative error term.
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Log-Log Model

Regression Model

log(Y;) = Bo + B1log(X;) + e

Interpretation

e A one-percent increase in the explanatory variable leads to a Bi-percent change in
the outcome variable, on average.

e This is the definition of an elasticity in economics (A%Q/A%P)

e Example: Iflog(Quantity/D\emandedi) = 0.45 — 0.31 - log(Income;), then each one-
percent increase in income decreases quantity demanded by 0.31 percent.
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e We want to know how to interpret what is the associated increase in Y, when we increase X
in 1 percent unit (differnent from before).

log(Y;) = By + B1log(X;) + e
log(Y;) = Bo + B1log(X; x 1.01) + e;
log(Y;) — log(Y;) = Bo + B1X; + B1log(1.01) + e;—
(Bo + b1 X + &)

log(Yi) — log(Y;) = B11og(1.01)
log(Y;) = log(Yi) + B1 log(1.01)
log(Y;) ~ log(Y;) + B1 x 0.01
log(Y;) ~ log(Y;) + log(1 + 51/100)
log(Y;) ~ log(Y;(1 + $1/100))

A one-percent increase Iin X leads to a Bi-percent increase inY. 21/ 45



Log-Log Example

2500

2000

1500

1000

500

log(Y;) = 0.01 + 2.99 - log(X;)

0.0

10.0
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Log-Log Example

A

log(Y;) = 0.01 + 2.99 - log(X;)

log(Y)

-10

log(X) 22 | 45



Linear-Log Model

Nonlinear Model
eVl = aXflei

e X > 0and e; I1sa multiplicative error term.
e Cannot estimate parameters with OLS directly.
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Linear-Log Model

Nonlinear Model
eVl = aXflei

e X > 0and e; I1sa multiplicative error term.
e Cannot estimate parameters with OLS directly.

Logarithmic Transformation
Y; = log(a) + B1log(X;) + log(e;)
e Redefine log(a) = By and log(e;) = e;.
Transformed (Linear) Model

Y: = Bo + Bilog(X;) + e; 23 / 45



Linear-Log Model

Regression Model

Y, = By + B1log(X;) + e;

Interpretation

e A one-percent increase Iin the explanatory variable increases the outcome variable
by approximately 8 <+ 100, on average.

e Example: If (Blood P;ressure)i = 150 — 9.1 log(Income;), then a one-percent
Increase In income decrease blood pressure by 0.091 points.
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Linear-Log Example

A

Y; =0+ 0.99 - log(X;)

0.0
-2.5
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(Approximate) Coefficient Interpretation

Model B1 Interpretation

Level-level AY = (31 - AX

Y, = 8o+ B51X; + € A one-unit increase in X leads to a By-unit increase in'Y

Log-level %AY =100 5, - AX

log(Y;) = Bo + B1X; + €; A one-unit increase in X leads to a By - 100% increase in Y

Log-log NAY = 81 - BAX

log(Y;) = Bo + B1log(X;) + e; Aone-percent increase in X leads to a 1% increase in'Y

Level-log AY = (B +100) - BAX

Y; = Bo + B1log(X;) + e; A one-percent increase in X leads to a B = 100-unit increase in
Y
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Can We Do Better?

——

(Life Expectancy); = 53.96 + 8 x 10~ * - GDP; R*=0.34

Life Expectancy
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Can We Do Better?

——

log(Life Expectancy,) = 3.97 4+ 1.3 x 107°-GDP;  R*=10.3
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Can We Do Better?

———

log(Life Expectancy,) = 2.86 + 0.15 - log(GDP;) R? =0.61

4.5

P
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Can We Do Better?

——

(Life Expectancy); = —9.1 + 8.41 - log(GDP;) R’ =0.65

80

Life Expectancy

40
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Practical Considerations

Consideration 1: Do your data take negative numbers or zeros as values?
log(0)
#> [1] -Inf
Consideration 2: \What coefficient interpretation do you want? Unit change? Unit-free percent change?

Consideration 3: Are your data skewed?

50 20
e T ]
0 R— —_—— 0 .

0e+00 le+05 2e+05 3e+05 4e+05 5e+05 9 10 11
Y log(Y)

12 13
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Final Message: Allways Plot Your Data (Anscombe's Quartet)

12

Four "identical” regressions: Intercept = 3, Slope = 0.5, R? = 0.67
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Other Non-linear Relationships

e Binary dependent variable
e Interactions (covered later in the course)

e Polynomial regressors (not covered)

33/ 45



Binary Dependent Variable

e Previously, introductory courses spent significant time arguing that binary dependent outcomes

Invalidated regression.
e The two main reasons were:

1. This is a highly non-linear relationship (draw plot)
2. The errors in this context have a variance that is correlated with the Xs (heteroskedasticity).

e The approach we follow here does not focus on spending much time addressing this concerns. Because

o Even If its non-linear, the CEF property #2 says that regression will find the best linear
approximation. The key is to choose regressors well (in this case a collection of dummies probably

will work better than a single slope).
o We now use robust standard errors pretty much all the time.

e Regression in this context takes the name Linear Probability Model (the other methods not covered

here are Logit and Probit estimation). 34 | 45



(Polynomials Terms in a Regression)
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Quadratic (and other Polynomial) Relationships [NC]

0.0 2.5 5.0 7.5 10.0
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Quadratic Regression [NC]

Regression Model
Yi=00+ B Xi+ BX +e
Interpretation

Sign of By indicates whether the relationship is convex (+) or concave (-)

Sign of 81?7 &

Partial derivative of Y with respect to X is the marginal effect of X on Y~

oY
X = [1 + 26X

o Effect of X depends on the level of X
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Quadratic Regression [NC]

Im(y ~ x + I(x"2), data = quad_df) %>% tidy()

#> # A tibble: 3 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 13.2 2.26 5.81 8.30e- 9
#> 2 X 15.7 1.03 15.3 1.99e- 47
#> 3 I(x"2) -2.50 ©0.0982 -25.4 2.46e-110

What Is the marginal effect of X on Y~
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Quadratic Regression [NC]

Im(y ~ x + I(x"2), data = quad_df) %>% tidy()

#> # A tibble: 3 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 13.2 2.26 5.81 8.30e- 9
#> 2 X 15.7 1.03 15.3 1.99e- 47
#> 3 I(x"2) -2.50 ©0.0982 -25.4 2.46e-110

What Is the marginal effect of X on Y~
Y .

% = P1+26,X =15.60 + ~4.99X
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Quadratic Regression [NC]
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Quadratic Regression [NC]

Im(y ~ x + I(x"2), data = quad_df) %>% tidy()

#> # A tibble: 3 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 13.2 2.26 5.81 8.30e- 9
#> 2 X 15.7 1.03 15.3 1.99e- 47
#> 3 I(x"2) -2.50 ©0.0982 -25.4 2.46e-110

What Is the marginal effect of X on Y when X = 07
oY

——_| =8,=15.69
X |y, b1
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Quadratic Regression [NC]

Im(y ~ x + I(x"2), data = quad_df) %>% tidy()

#> # A tibble: 3 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 13.2 2.26 5.81 8.30e- 9
#> 2 X 15.7 1.03 15.3 1.99e- 47
#> 3 I(x"2) -2.50 ©0.0982 -25.4 2.46e-110
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Quadratic Regression [NC]

Im(y ~ x + I(x"2), data = quad_df) %>% tidy()

#> # A tibble: 3 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 13.2 2.26 5.81 8.30e- 9
#> 2 X 15.7 1.03 15.3 1.99e- 47
#> 3 I(x"2) -2.50 ©0.0982 -25.4 2.46e-110

What is the marginal effect of X on Y when X = 27
oY

—— | =8,4+28,-(2) =15.69 — 9.99 = 5.71
5X |, B, +2B85-(2)
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Quadratic Regression [NC]

Im(y ~ x + I(x"2), data = quad_df) %>% tidy()

#> # A tibble: 3 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 13.2 2.26 5.81 8.30e- 9
#> 2 X 15.7 1.03 15.3 1.99e- 47
#> 3 I(x"2) -2.50 ©0.0982 -25.4 2.46e-110

What Is the marginal effect of X on Y when X = 77
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Quadratic Regression [NC]

Im(y ~ x + I(x"2), data = quad_df) %>% tidy()

#> # A tibble: 3 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 13.2 2.26 5.81 8.30e- 9
#> 2 X 15.7 1.03 15.3 1.99e- 47
#> 3 I(x"2) -2.50 ©0.0982 -25.4 2.46e-110

What Is the marginal effect of X on Y when X = 77
oY

—| =B, +26,-(7) = 15.69 — 34.96 = —19.27
X X=7
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Quadratic Regression [NC]

Where does the regression Y; = BO + BlX,- + BzXf turn?
e In other words, where is the peak (valley) of the fitted relationship?

Step 1: Take the derivative and set equal to zero.

Y 5 s
8—X — ,81 ‘|‘ 252X = 0
Step 2: Solve for X.
X=- B}
28,

Example: Peak of previous regression occurs at X = 3.14.
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