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Housekeeping

Let's choose the chapter for the summary (still due Friday 5pm on gradescope)

Practice questions are up. Midterm will follow similar questions (but not exactly
the same ones).

Goal: if you understood the concepts behind the practice questions, you will do
well in the midterm.

Switching the order of the review session: will do a review on Monday (before the
midterm), and on Wednesday we will start with new material. Bring questions! (I
will not bring new material, if we finish early we can watch the first part of Run
Lola Run)
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Regression Journey

Regression as Matching on Groups. Ch2 of MM up to page 68 (not included).

Regression as Line Fitting and Conditional Expectation. Ch2 of MM, Appendix.

Multiple Regression and Omitted Variable Bias. Ch2 of MM pages 68-79 and
Appendix.

All Things Regression: Anatomy, Inference, Logarithms, Binary Outcomes, and .
Ch2 of MM, Appendix + others.

R2
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Today and Tomorrow's Lecture

Regression Anatomy

Regression Inference

Non-linearities:

Logarithms
Others

Binary Outcomes

R2
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Analysis of Variance

Remember that .

We have the following decomposition

Total variation (SST) = Model explained (SSE) + Unexplained (SSR)

Because:

Yi = Ŷi + ei

V ar(Y ) = V ar(Ŷ + e)

= V ar(Ŷ ) + V ar(e) + 2Cov(Ŷ , e)

= V ar(Ŷ ) + V ar(e)

V ar(x + y) = V ar(x) + V ar(y) + 2Cov(x, y)

Cov(Ŷ , e) = 0 6 / 45



Goodness of Fit

The  measures how well the model fits the data.R2
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Goodness of Fit

The  measures how well the model fits the data.

 close to  indicates a very high explanatory power of the model.
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Goodness of Fit

The  measures how well the model fits the data.

 close to  indicates a very high explanatory power of the model.

 close to  indicates a very low explanatory power of the model.

Interpretation: an  of 0.5, for example, means that the variation in  "explains" 50% of the
variation in .

⚠️ Low  does NOT mean it's a useless model! Remember that econometrics is interested
in causal mechanisms, not prediction!

⚠️ The  is NOT an indicator of whether a relationship is causal!
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R2 = = = 1 − ∈ [0, 1]
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total variance
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Non-linearitiesNon-linearities
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Non-linearities

( ˆLife Expectancy)i = 53.96 + 8 × 10−4 ⋅ GDPi
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Nonlinear Relationships

Erroneus critique of regression: "many economic relationships are nonlinear (e.g.,
most production functions, profit, diminishing marginal utility, tax revenue as a
function of the tax rate, etc.), hence fitting straight lines is a bad way of estimating
such relationships"
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Nonlinear Relationships

Erroneus critique of regression: "many economic relationships are nonlinear (e.g.,
most production functions, profit, diminishing marginal utility, tax revenue as a
function of the tax rate, etc.), hence fitting straight lines is a bad way of estimating
such relationships"

The flexibility of regression
OLS estimation can accommodate many, but not all,
nonlinear relationships.

Underlying model must be linear-in-parameters.

Nonlinear transformations of variables are okay.
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Linearity

Linear-in-parameters: Parameters enter model as a weighted sum, where the weights
are functions of the variables.

This is the one required to estimate OLS

Linear-in-variables: Variables enter the model as a weighted sum, where the weights
are functions of the parameters.

This is the one the critique was pointing at. OLS works perfectly here.
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Linearity

Linear-in-parameters: Parameters enter model as a weighted sum, where the weights
are functions of the variables.

This is the one required to estimate OLS

Linear-in-variables: Variables enter the model as a weighted sum, where the weights
are functions of the parameters.

This is the one the critique was pointing at. OLS works perfectly here.

The standard linear regression model satisfies both properties:

Yi = β0 + β1X1i + β2X2i + ⋯ + βkXki + ei
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Linearity

Which of the following is linear-in-parameters, linear-in-variables, or neither?

1. 

2. 

3. 

Yi = β0 + β1Xi + β2X2
i + ⋯ + βkXk

i + ei

Yi = β0X
β1

i ei

Yi = β0 + β1β2Xi + ei
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Linearity

Which of the following is linear-in-parameters, linear-in-variables, or neither?

1. 

2. 

3. 

Model 1 is linear-in-parameters, but not linear-in-variables.

Model 2 is neither.

Model 3 is linear-in-variables, but not linear-in-parameters.

Yi = β0 + β1Xi + β2X2
i + ⋯ + βkXk

i + ei

Yi = β0X
β1

i ei

Yi = β0 + β1β2Xi + ei
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We're Going to Take Logs

The natural log is the inverse function for the exponential function: 

 for .

(Natural) Log Rules and Approximations

1. Product rule: .

2. Quotient rule: .

3. Power rule: .

4. , , and  is undefined for .

5. Approximation:  If A is very small (~less than 0.2)

log(ex) = x x > 0

log(AB) = log(A) + log(B)

log(A/B) = log(A) − log(B)

log(AB) = B ⋅ log(A)

log(e) = 1 log(1) = 0 log(x) x ≤ 0

log(1 + A) = A
13 / 45



Log-Linear Model
Nonlinear Model

,  is continuous, and  is a multiplicative error term.
Cannot estimate parameters with OLS directly.

Logarithmic Transformation

Redefine  and .

Transformed (Linear) Model

Can estimate with OLS, but coefficient interpretation changes.

Yi = αeβ1Xiei

Y > 0 X ei

log(Yi) = log(α) + β1Xi + log(ei)

log(α) ≡ β0 log(ei) ≡ ei

log(Yi) = β0 + β1Xi + ei
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Log-Linear Model

Interpretation

A one-unit increase in the explanatory variable increases the outcome variable by
approximately  percent, on average.

Example: If , then an additional year of schooling
increases pay by approximately 3 percent, on average.

log(Yi) = β0 + β1Xi + ei

β1 × 100

log( ^Payi) = 2.9 + 0.03 ⋅ Schooli
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We want to know how to interpret what is the
associated increase in , when we increase 
in one unit.

Why?

Y X

log(Yi) = β0 + β1Xi + ei

l̃og(Yi) = β0 + β1(Xi + 1) + ei
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We want to know how to interpret what is the
associated increase in , when we increase 
in one unit.

Comparing log(1+X) with X

Why?

Y X

log(Yi) = β0 + β1Xi + ei

l̃og(Yi) = β0 + β1(Xi + 1) + ei

l̃og(Yi) − log(Yi) = β0 + β1Xi + β1 + ei−

(β0 + β1Xi + ei)

l̃og(Yi) − log(Yi) = β1
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We want to know how to interpret what is the
associated increase in , when we increase 
in one unit.

Comparing log(1+X) with X

A one-unit increase in the explanatory
variable increases the outcome variable by
approximately  percent, on average.
What if  is large (>0.2)? No problem, just
divide X by 10, 100, or larger, to shrink the
units of .

Why?

Y X

log(Yi) = β0 + β1Xi + ei

l̃og(Yi) = β0 + β1(Xi + 1) + ei

l̃og(Yi) − log(Yi) = β0 + β1Xi + β1 + ei−

(β0 + β1Xi + ei)

l̃og(Yi) − log(Yi) = β1

l̃og(Yi) = log(Yi) + β1

l̃og(Yi) ≈ log(Yi) + log(1 + β1)

l̃og(Yi) ≈ log(Yi(1 + β1))

Ỹ i ≈ Yi(1 + β1)

β1 × 100

β1

β1 16 / 45



Exact Approximation

(If X is Binary and : Use Exact)

If we cannot re-scale (X)  to have a small (\beta)  we need to compute the percentage difference using
the exact formula (left). Also, interpretation from 1 to 0 does not work well in approximation.

β > 0.2

log(Yi) = β0 + β1Xi + ei

l̃og(Yi) = β0 + β1(Xi + 1) + ei

l̃og(Yi) − log(Yi) = β0 + β1Xi + β1 + ei−

(β0 + β1Xi + ei)

l̃og(Yi) − log(Yi) = β1

log(Ỹ i/Yi) = β1

Ỹ i/Yi = eβ1

(Ỹ i − Yi)/Yi = eβ1 − 1 From X = 0 to X = 1

(Ỹ i − Yi)/Yi = e−β1 − 1 From X = 1 to X = 0

l̃og(Yi) = log(Yi) + β1

l̃og(Yi) ≈ log(Yi) + log(1 + β1)

l̃og(Yi) ≈ log(Yi(1 + β1))

Ỹ i ≈ Yi(1 + β1)
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Log-Linear Example

log(Ŷi) = 10.02 + 0.73 ⋅ Xi
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Log-Log Model

Nonlinear Model

, , and  is a multiplicative error term.
Cannot estimate parameters with OLS directly.

Yi = αX
β1

i ei

Y > 0 X > 0 ei
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Log-Log Model

Regression Model

Interpretation

A one-percent increase in the explanatory variable leads to a -percent change in
the outcome variable, on average.

This is the definition of an elasticity in economics 

Example: If , then each one-
percent increase in income decreases quantity demanded by 0.31 percent.

log(Yi) = β0 + β1 log(Xi) + ei

β1

(Δ%Q/Δ%P)

log( ˆQuantity Demandedi) = 0.45 − 0.31 ⋅ log(Incomei)
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Why?

We want to know how to interpret what is the associated increase in , when we increase 
in 1 percent unit (differnent from before).

A one-percent increase in  leads to a -percent increase in .

Y X

log(Yi) = β0 + β1 log(Xi) + ei

l̃og(Yi) = β0 + β1 log(Xi × 1.01) + ei

l̃og(Yi) − log(Yi) = β0 + β1Xi + β1 log(1.01) + ei−

(β0 + β1Xi + ei)

l̃og(Yi) − log(Yi) = β1 log(1.01)

l̃og(Yi) = log(Yi) + β1 log(1.01)

l̃og(Yi) ≈ log(Yi) + β1 × 0.01

l̃og(Yi) ≈ log(Yi) + log(1 + β1/100)

l̃og(Yi) ≈ log(Yi(1 + β1/100))

X β1 Y 21 / 45



Log-Log Example

log(Ŷi) = 0.01 + 2.99 ⋅ log(Xi)
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Log-Log Example
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Linear-Log Model

Nonlinear Model

 and  is a multiplicative error term.
Cannot estimate parameters with OLS directly.

eYi = αX
β1

i ei

X > 0 ei
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Linear-Log Model

Nonlinear Model

 and  is a multiplicative error term.
Cannot estimate parameters with OLS directly.

Logarithmic Transformation

Redefine  and .

Transformed (Linear) Model

eYi = αX
β1

i ei

X > 0 ei

Yi = log(α) + β1 log(Xi) + log(ei)

log(α) ≡ β0 log(ei) ≡ ei
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Linear-Log Model

Regression Model

Interpretation

A one-percent increase in the explanatory variable increases the outcome variable
by approximately , on average.

Example: If , then a one-percent
increase in income decrease blood pressure by 0.091 points.

Yi = β0 + β1 log(Xi) + ei

β1 ÷ 100

^(Blood Pressure)i = 150 − 9.1 log(Incomei)
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Linear-Log Example

Ŷi = 0 + 0.99 ⋅ log(Xi)
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Linear-Log Example

Ŷi = 0 + 0.99 ⋅ log(Xi)
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(Approximate) Coefficient Interpretation

Model  Interpretation

Level-level 
  

A one-unit increase in  leads to a -unit increase in 

Log-level 
  

A one-unit increase in  leads to a  increase in 

Log-log 
  

A one-percent increase in  leads to a  increase in 

Level-log 
  

A one-percent increase in  leads to a -unit increase in

β1

Yi = β0 + β1Xi + ei

ΔY = β1 ⋅ ΔX

X β1 Y

log(Yi) = β0 + β1Xi + ei

%ΔY = 100 ⋅ β1 ⋅ ΔX

X β1 ⋅ 100% Y

log(Yi) = β0 + β1 log(Xi) + ei

%ΔY = β1 ⋅ %ΔX

X β1% Y

Yi = β0 + β1 log(Xi) + ei

ΔY = (β1 ÷ 100) ⋅ %ΔX

X β1 ÷ 100

Y
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Can We Do Better?

( ˆLife Expectancy)i = 53.96 + 8 × 10−4 ⋅ GDPi R2 = 0.34
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Can We Do Better?

log( ˆLife Expectancyi) = 3.97 + 1.3 × 10−5 ⋅ GDPi R2 = 0.3
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Can We Do Better?

log( ˆLife Expectancyi) = 2.86 + 0.15 ⋅ log(GDPi) R2 = 0.61
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Can We Do Better?

( ˆLife Expectancy)i = −9.1 + 8.41 ⋅ log(GDPi) R2 = 0.65
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Practical Considerations
Consideration 1: Do your data take negative numbers or zeros as values?

log(0)

#> [1] -Inf

Consideration 2: What coefficient interpretation do you want? Unit change? Unit-free percent change?

Consideration 3: Are your data skewed?
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Final Message: Allways Plot Your Data (Anscombe's Quartet)

Four "identical" regressions: Intercept = 3, Slope = 0.5, R2 = 0.67
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Other Non-linear Relationships

Binary dependent variable

Interactions (covered later in the course)

Polynomial regressors (not covered)
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Binary Dependent Variable
Previously, introductory courses spent significant time arguing that binary dependent outcomes
invalidated regression.

The two main reasons were:

1. This is a highly non-linear relationship (draw plot)
2. The errors in this context have a variance that is correlated with the Xs (heteroskedasticity).

The approach we follow here does not focus on spending much time addressing this concerns. Because

Even if its non-linear, the CEF property #2 says that regression will find the best linear
approximation. The key is to choose regressors well (in this case a collection of dummies probably
will work better than a single slope).
We now use robust standard errors pretty much all the time.

Regression in this context takes the name Linear Probability Model (the other methods not covered
here are Logit and Probit estimation). 34 / 45



(Polynomials Terms in a Regression)(Polynomials Terms in a Regression)
(Not Covered, but leaving it here in case you are interested.
Requires a little knowing the derivative of polynomials)
(Will mark each of the non-covered slides with an [NC])
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Quadratic (and other Polynomial) Relationships [NC]
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Quadratic Regression [NC]
Regression Model

Interpretation

Sign of  indicates whether the relationship is convex (+) or concave (-)

Sign of ? 🤷

Partial derivative of  with respect to  is the marginal effect of  on :

Effect of  depends on the level of 

Yi = β0 + β1Xi + β2X2
i + ei

β2

β1

Y X X Y

= β1 + 2β2X
∂Y

∂X

X X
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Quadratic Regression [NC]

lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e-  9
#> 2 x              15.7     1.03       15.3  1.99e- 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on ?X Y
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ˆ
= β̂1 + 2β̂2X = 15.69 + −4.99X

∂Y

∂X

38 / 45



Quadratic Regression [NC]

lm(y ~ x + I(x^2), data = quad_df) %>% tidy()
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Quadratic Regression [NC]

lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e-  9
#> 2 x              15.7     1.03       15.3  1.99e- 47
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What is the marginal effect of  on  when ?
X Y X = 0

ˆ ∣
∣
∣X=0

= β̂1 = 15.69
∂Y

∂X
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Quadratic Regression [NC]

lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e-  9
#> 2 x              15.7     1.03       15.3  1.99e- 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on  when ?X Y X = 2
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Quadratic Regression [NC]

lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e-  9
#> 2 x              15.7     1.03       15.3  1.99e- 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on  when ?
X Y X = 2

ˆ ∣
∣
∣X=2

= β̂1 + 2β̂2 ⋅ (2) = 15.69 − 9.99 = 5.71
∂Y

∂X
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Quadratic Regression [NC]

lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e-  9
#> 2 x              15.7     1.03       15.3  1.99e- 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on  when ?X Y X = 7
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Quadratic Regression [NC]

lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e-  9
#> 2 x              15.7     1.03       15.3  1.99e- 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on  when ?
X Y X = 7

ˆ ∣
∣
∣X=7

= β̂1 + 2β̂2 ⋅ (7) = 15.69 − 34.96 = −19.27
∂Y

∂X
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Fitted Regression Line



Marginal Effect of X on Y



Quadratic Regression [NC]
Where does the regression  turn?

In other words, where is the peak (valley) of the fitted relationship?

Step 1: Take the derivative and set equal to zero.

Step 2: Solve for .

Example: Peak of previous regression occurs at .

Ŷi = β̂0 + β̂1Xi + β̂2X2
i

ˆ
= β̂1 + 2β̂2X = 0

∂Y

∂X

X

X = −
β̂1

2β̂2

X = 3.14
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