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Regression Journey

Regression as Matching on Groups. Ch2 of MM up to page 68 (not included).

Regression as Line Fitting and Conditional Expectation. Ch2 of MM, Appendix.

Multiple Regression and Omitted Variable Bias. Ch2 of MM pages 68-79 and
Appendix.

All Things Regression: Anatomy, Inference, Logarithms, Binary Outcomes, and .
Ch2 of MM, Appendix + others.

R2

2 / 36



Regression Journey

Regression as Matching on Groups. Ch2 of MM up to page 68 (not included).

Regression as Line Fitting and Conditional Expectation. Ch2 of MM, Appendix.

Multiple Regression and Omitted Variable Bias. Ch2 of MM pages 68-79 and
Appendix.

All Things Regression: Anatomy, Inference, Logarithms, Binary Outcomes, and .
Ch2 of MM, Appendix + others.

R2

3 / 36



Today and Tomorrow's Lecture

Regression Anatomy

Regression Inference

Non-linearities:

Logarithms
Others

Binary Outcomes

R2

4 / 36



Regression AnatomyRegression Anatomy
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Regression Anatomy

In addition to the intuition of regression as matching in subgroups, here we will
explore another interpretation of what does it mean to control for multiple
variables (regressors)

We started with our exploration to regression with just on regressor:

We then added multiple regressors and interpreted the beta coefficient as a
weighted average of difference within subgroups.

The first resgression is sometimes called a bivariate regression (or bivariate
analysis, aka univariate analysis, in the sense that there is only one independent
variable).

Yi = α + βPi + ei

6 / 36



"Controlling For" a Second Interpretation 1/2

In a multiple regression like the following:

The coefficient of   is the same as the one obtained from a bivariate regression
between the outcome variable  and the residual term , that corresponds to the
following (auxiliary) regression:

Meaning:

Yi = β0 + β1X1i + β2X2i + ei

X1i (β1)

(Yi) X̃ 1i

X1i = π0 + π1X2i + X̃ 1i

β1 =
Cov(Yi, X̃ 1i)

Var(X̃ 1i)
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"Controlling For" a Second Interpretation 2/2

Let’s think about what this residual means:
All variation (information) in  that cannot be explained by variation
(information) in .
Then the bivariate regression (of  and  ) is basically regressing  on “all
of  that is not explained by ” or “all of , removing, or controlling for,
the variation in ”

X1i = π0 + π1X2i + X̃ 1i

X1i

X2i

Yi X̃ 1i Yi

X1i X2i X1i

X2i
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Regression Anatomy: Visually

This formula also applies for the residual after regression  on , and this last
one has a nice visual interpretation.

(Regression Anatomy here is a simplified version of a more general idea called the
Frisch-Waugh-Lovell theorem, it is outside of the scope of the course, but if you
learn linear algebra, it has a really cool interpretation)

Graphical example (Again from the great slides of Ed Rubin) for the case where 
is a binary variable

Yi X2i

X2i
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https://github.com/edrubin/EC607S21


Regression Anatomy: Visually

Yi = β0 + β1X1i + β2X2i + ei
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Regression Anatomy: Visually

 gives the relationship between  and  after controlling for β1 y x1 x2
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Regression Anatomy: Many Regressors 1/2

This logic, of removing the variation explained by other regressors and turning a
multivariate regression into a bivariate regression, applies to any number of
regressors.

Hence the multivariate regression:

The coefficient of   is the same as the one obtained from a bivariate
regression between the outcome variable  and the residual term , that
corresponds to the following (auxiliary) regression:

Yi = β0 + β1X1i + β2X2i+. . . +βkXki+. . . βKXKi + ei

Xki (βk)

(Yi) X̃ ki

Xki = π0 + π1X1i + π1X2i+. . . πk−1Xk−1,i + πk+1Xk+1,i+. . . +βKXKi + X̃ k1i
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Regression Anatomy: Many Regressors 2/2

With:

With this approach, "controlling for" can be understood as "removing all the
variation between the variable of interest  and all the other controls"

βk =
Cov(Yi, X̃ ki)

Var(X̃ ki)

(Xki)
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Regression InferenceRegression Inference
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Population

Until Now We Have Focus On The Population Regression
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Population

Population relationship

Until Now We Have Focus On The Population Regression

Yi = 2.53 + 0.57Xi + ei

Yi = α + βXi + ei
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Sample 1: 30 random individuals

Now We Focus On Regressions Based On A Sample
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Sample 1: 30 random individuals

Population relationship



Sample relationship



Now We Focus On Regressions Based On A Sample

Yi = 2.53 + 0.57Xi + ui

Ŷ i = 2.36 + 0.61Xi
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Sample 2: 30 random individuals

Population relationship



Sample relationship



Now We Focus On Regressions Based On A Sample

Yi = 2.53 + 0.57Xi + ui

Ŷ i = 2.79 + 0.56Xi
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Sample 3: 30 random individuals

Population relationship



Sample relationship



Now We Focus On Regressions Based On A Sample

Yi = 2.53 + 0.57Xi + ui

Ŷ i = 3.21 + 0.45Xi
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Repeat 10,000 times (Monte Carlo simulation).





Intercept Estimates Slope Estimates

CLT in Action

The estimated coefficients are a linear combination (similar to a summation) of
independent random variables. Hence the CLT applies.

Let  be the estimated coefficient of the slope, CLT tells us: β̂ β̂ ∼ N(β, SE(β̂))
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Standard Errors of Estimated Coefficients 1/3

Remember that the standard deviation of the sample mean, what we called
standard errors, is:

A similar formula applied also to the difference in means .

Following a similar intuition, here we will state that the standard error of the
estimated regression coefficient of interest is:

SE(
¯̄¯̄
Y ) =

σY

√n

μ̂ = ¯̄¯̄
Y 1 − ¯̄¯̄

Y 0

SE(β̂) = ×
σe

√n

1

σX
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One regressor: 

 plays a similar role as for the
previous SEs.

: is the standard deviation of the
residual. As  explains (fits) more of 

 this standard deviation gets
smaller. As  explains more of , the
precision of  increases.

: is the standard deviation of the
variable . As  varies more, the
precision of  increases.

Standard Errors of Estimated Coefficients 2/3

SE(β̂) = ×σe

√n

1
σX

n

σe

X

Y

X Y

β̂

σX

X X

β̂
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The standard error of a coefficient 
in a multivariate regression is:



Where  comes from a multivariate
regression: 

And  is the residual from
regression anatomy:

Standard Errors of Estimated Coefficients 3/3

 is the standard deviation of the residual . It represents all the variation
that is left in  after controlling for all other regressors. By construction it will be
less than . Notice the trade-off of adding more regressors.

β̂ k

β̂ k

X̃ ki

SE(β̂ k) = ×
σe

√n

1

σX̃ k

Yi = α +
K

∑
k=1

βkXki + ei

Xki = π0 +
k−1

∑
j=1

πjXki +
K

∑
j=k+1

πjXki + X̃ ki

σX̃ k
X̃ ki

Xk

σXk 29 / 36



Collinearity 1/2

Collinearity is a problem of regression that happens when two or more regressors
are closely correlated ("colinear").

In the non-extreme case of perfect collinearity, regression will still work, but the
resulting SE will be inflated. Let's look at the SE formula to see why:

If  is highly collinear, with one or more other regressors, it will render a very
small residual in the auxiliary regression, resulting in turn in a very small .
Given that this last term is in the denominator, the SE will become very large,
rendering any coefficient statistically insignificant.

SE(β̂ k) = ×
σe

√n

1

σX̃ k

Xk

σX̃ k
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Collinearity 2/2

The extreme version of this problem is when one regressor is perfectly correlated with one
or more regressors (making it a linear combination of the regressor).

In this case the residual is zero, and so is its variance in the auxiliary regression.

Under perfect collinearity (aka multicollinearity) the software that is runnin the regression
will do one of two things: (i) drop one or more of the regressor to avoid perfect collinearity,
or (ii) don't run the regression (saying something like "cannot invert matrix").

(Perfect collinearity is the reason why we don't include two binary variables two describe
two groups, as they would be perfectly collinear with the intercept)

SE(β̂ k) = ×
σe

√n

1

σX̃ k

31 / 36



Robust Standard Errors

One underlying assumption behind the SEs discussed so far is that the residual
does not change in a systematic way across the Xs.

For an example of how this assumption does not hold, look draw this pattern on
the board.

There is a modified version of the SEs that is robust to this problem. In the sense
that when the problem is present, it solves it, and when its not, it doesn't do harm.

This is the most common formula for standard errors that is reported in current
research.
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Repeat Hypothesis Testing and Confidence Intervals

Now that we have our SEs, the procedure to conduct hypothesis tests, and build
confidence intervals for estimated coefficients  , is the same as discussed in
the statistical inference lecture:

1. Define a null hypothesis  (usually )
2. Construct a t-statistic:  by subtracting the null and dividing by the SE.
3. Compute the p-value as probability that we observe a t-statistic as extreme as the

obtained in the sample, if the null is true. You don't need to obtain the exact p-
value, but you are asked to remember that the probability that this t-statistic is
larger than 1 is about 30%, of being larger than 2 is about 5%, and of being larger
than 3 is less than 1% (from the ).

(β̂)

β0 β0 = 0

t(β0)

N(0, 1)
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Non-linearitiesNon-linearities
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