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Regression Journey

Regression as Matching on Groups. Ch2 of MM up to page 68 (not included).

Regression as Line Fitting and Conditional Expectation. Ch2 of MM, Appendix.

Multiple Regression and Omitted Variable Bias. Ch2 of MM pages 68-79 and
Appendix.

Regression Inference, Binary Variables and Logarithms. Ch2 of MM, Appendix +
others.
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Today's Lecture

Omitted Variable Bias (very important)

Regression Anatomy (not essential)
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Omitted Variable Bias (OVB)Omitted Variable Bias (OVB)
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Omitted Variable Bias (OVB)

We are back into the focus on causality!

The most common regression version of selection bias is called omitted variable
bias (OVB).

Let's go back to the causal question from Dale and Krueger (2002) to motivate this
concept.
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In moving from (1) to (2) we were
controlling for 
Including  had an effect on the
coefficient of 
Let's review the change from (4) to (5).
Including , after controlling for
selectivity, seems to not change our
causal estimates.
Today we will formalize this relationship
and it will help us understand how other
unobservables might affect our causal
estimates

Back to Earnings and Private/Public College Choice

SAT

SAT

Pi

SAT
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Can We Control for Everything?

In our regressions we would like to control for how much resources had the family
of each student.
A proxy for resources is parental income, but it does not capture other aspects of
being rich or poor in resources.
One example is that two families could have the same income but different family
sizes.

Imagine a family of 3 and a family of 6 with the same parental income. The
larger family has far fewer resources to pay for higher tuition fees than the
smaller family.
So even controlling for parental income, we would not have Other Things Equal.

OVB helps us describe what happens when a relevant variable is omitted
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What Can We Say About This Bias?

To understand OVB, let's go back to the simple example of 5 students and two
selectivity groups (A and B) for the effect of private college on earnings.

First, assume that we have all the variables we need and then explore how
omitting the variable group  will bias our estimates.(Ai)
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What Can We Say About This Bias?

To understand OVB, let's go back to the simple example of 5 students and two
selectivity groups (A and B) for the effect of private college on earnings.

First, assume that we have all the variables we need and then explore how
omitting the variable group  will bias our estimates.

Let’s label the regression that has the variable  as the “long” regression  and
the regression that does not have this variable as the “short” regression .

(Ai)

(Ai) (l)

(s)

Yi = αl + βlPi + γAi + el
i

Yi = αs + βsPi + es
i
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From the toy example data on Table 2.1 of
MM, we have already compute the
regression estimates , 

, and 
Any ideas on how to compute the
regression coefficient ?

Short and Long Regressions: Simple Example 1/2

αl = 40, 000

βl = 10, 000 γ l = 60, 000

βs
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From the toy example data on Table 2.1 of
MM, we have already compute the
regression estimates , 

, and 
Any ideas on how to compute the
regression coefficient ?
As we saw yesterday  is the simple
difference in earnings  between
treatment  and control .
From table 2.1 (focusing only on groups A
and B) we have that .
Omitting  leads to bias = 

Short and Long Regressions: Simple Example 1/2

αl = 40, 000

βl = 10, 000 γ l = 60, 000

βs

βs

(Yi)

(Pi = 1) (Pi = 0)

βs = 20, 000

Ai

βs − βl = 10, 000 10 / 24



Short and Long Regressions: Simple Example 2/2

OVB is define as the difference between effect omitting (on short) minus the effect
not omitting (on long). . In this toy example is 10k.

The source of this bias is in attributing to  the difference between groups (A and
B) captured by .

We can now establish more formally the two components that connect the
coefficients from the long and short regression:

1. The relationship between the omitted variable  and treatment .
2. The relationship between the outcome  and the omitted variable . This

relationship is givent by the parameter  in the long regression.

OV B ≡ βs − βl

Pi

Ai

(Ai) (Pi)

(Yi) (Ai)

γ
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OVB Formula: General

Effect of included in short = Effect of included in long +

Effect of omitted on outcome, in long ×

Relationhip between omitted and included ×
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OVB Formula: General

"Short equals long plus effect of omitted in long (on outcome) times the
regression of omitted on included"

Effect of included in short = Effect of included in long +

Effect of omitted on outcome, in long ×

Relationhip between omitted and included ×
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OVB Formula: General (Causal)

"Short equals long plus effect of omitted in long (on outcome) times the
regression of omitted on included"

Effect of treatment in short = Effect of treatment in long +

Effect of omitted on outcome, in long ×

Relationhip between omitted and treatment ×
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OVB Formula in Example 1/3

"Short equals long plus effect of omitted in long (on outcome) times the
regression of omitted on included"

Effect of Pi in short = Effect of Pi in long +

Effect of Ai on Yi (in long) ×

Relationship between Ai and Pi
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OVB Formula in Example 2/3
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OVB Formula in Example 2/3
Effect of Pi in short = Effect of Pi in long +

Effect of Ai on Yi (in long) ×

Relationship between Ai and Pi

βs = βl +

Relationship between Ai and Pi ×
γ

OV B = βs − βl = Relationship between Ai and Pi × γ
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OVB Formula in Example 2/3

The relationship between  and  can be estimated using an auxiliary regression:

Effect of Pi in short = Effect of Pi in long +

Effect of Ai on Yi (in long) ×

Relationship between Ai and Pi

βs = βl +

Relationship between Ai and Pi ×
γ

OV B = βs − βl = Relationship between Ai and Pi × γ

Ai Pi

Ai = π0 + π1Pi + ui
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OVB Formula in Example 3/3

OV B = βs − βl = π1 × γ
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OVB Formula in Example 3/3

We know , how could we estimate ?

OV B = βs − βl = π1 × γ

γ = 60, 000 π1
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OVB Formula in Example 3/3

We know , how could we estimate ?

The same we obtained by computing  before!

The key idea is that we care about the bias that we cannot observe , but
we can investigate it by thinking about plausible values for the relationship
between omitted and included  and the effect of omitted in long .

OV B = βs − βl = π1 × γ

γ = 60, 000 π1

π1 =
¯̄¯̄
A1 −

¯̄¯̄
A0 = 2/3 − 1/2 = 0.1667

OV B = βs − βl = 0.1667 × 60, 000 = 10, 000

βs − βl

(βs − βl)

(π1) (γ)
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OVB in Dale and Krueger Study 1/3

Let's discuss how the omitted variable "Family Size"  could be generating
some OVB.

What would be the short equation in this case (hint: is not that short)?

(FSi)
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OVB in Dale and Krueger Study 2/3

What would be the auxiliary regression in this case?
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∑
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OVB in Dale and Krueger Study 2/3

What would be the auxiliary regression in this case?

Time to think about the sign and magnitude of  and  in this case.

lnYi = αs + βsPi +
150

∑
j=1

γs
j GROUPji + δs

1SAT + δs
2lnPIi + es

i

lnYi = αl + βlPi +
150

∑
j=1

γ l
jGROUPji + δl

1SAT + δl
2lnPIi + λFSi + el

i

FSi = π0 + π1Pi +
150

∑
j=1

π3,jGROUPji + π4SAT + π5lnPIi + ui

OV B = βs − βl = π1 × λ

π1 λ
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OVB in Dale and Krueger Study 3/3

 is likely to be negative and large in magnitude.
 higher family sizes might lead to less resources per children and this could have

a negative effect on future earnings. Hence 
Hence omitting  will probably lead to a OVB that is positive (estimated effects
are larger than true effects) positive.

π1

λ

λ < 0

FSi
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OVB in Dale and Krueger Study 3/3

 is likely to be negative and large in magnitude.
 higher family sizes might lead to less resources per children and this could have

a negative effect on future earnings. Hence 
Hence omitting  will probably lead to a OVB that is positive (estimated effects
are larger than true effects) positive.
Let's think of other potentially omitted variables: received tutoring? parental
education?
One thing that is interesting about this particular example is that most stories that
you can think have either  or  leading us to suspect that
the estimated effect of private college in a regression are likely to be
overestimated.

π1

λ

λ < 0

FSi

λ < 0, π1 < 0 λ > 0, π1 > 0
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Robustness to Inclusion/Exclussion of Regressors

In regression, we can never know if we have control for enough variables to
eliminate OVB/selection bias.

Given this, we should always ask how much do the estimated coefficients change
when including new variables.

Confidence on regression estimates of causal effects grow when treatment effects
are insensitive to the inclusion of new variables.
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Moving from column (1) to (2):
(1) was omitting , and (2) is the long
version of (1)

How about computing the same but using
the OVB formula?
We need the auxiliary regression (page 76
of MM): 
Where is the "effect of omitted in long" 
?

Robustness: Dale and Krueger Study 1/2

SATi

OV B = βs − βl = 0.212 − 0.152 = 0.06

π1 = 1.165

(λ)
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Moving from column (1) to (2):
(1) was omitting , and (2) is the long
version of (1).

How about computing the same but using
the OVB formula?
We need the auxiliary regression (page 76
of MM): 
Where is the "effect of omitted in long" 
?

!

Robustness: Dale and Krueger Study 1/2

SATi

OV B = βs − βl = 0.212 − 0.152 = 0.06

π1 = 1.165

(λ)

λ = 0.051

OV B = π1 × λ = 1.165 × 0.051 = 0.06
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Moving from column (4) to (5):
(4) was omitting , and (5) is the long
version of (4)

How about computing the same but using
the OVB formula?
We need the auxiliary regression (page 76
of MM): 
Where is the ?

Robustness: Dale and Krueger Study 2/2

SATi

OV B = βs − βl = 0.034 − 0.031 = 0.003

π1 = 0.066

(λ)
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Moving from column (4) to (5):
(4) was omitting , and (5) is the long
version of (4)

How about computing the same but using
the OVB formula?
We need the auxiliary regression (page 76
of MM): 
Where is the ?

!
Differences are due to rounding of small
numbers
Most of the change comes from 

Robustness: Dale and Krueger Study 2/2

SATi

OV B = βs − βl = 0.034 − 0.031 = 0.003

π1 = 0.066

(λ)

λ = 0.036

OV B = π1 × λ = 0.066 × 0.036 = 0.0024

π1
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Substitute for  using equation for long.

Proof of OVB Formula

βs
1 =

Cov(X1i, Y1i)

V ar(X1i)
Yi
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Substitute for  using equation for long.

But what is a key 
property of any residuals?

What is that last term? 
(think auxiliary regression)

Proof of OVB Formula

βs
1 =

βs =

=

βs =

= βl + γ

= βl + γπ1
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