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Regression Journey

Regression as Matching on Groups. Ch2 of MM up to page 68 (not included).

Regression as Line Fitting and Conditional Expectation. Ch2 of MM, Appendix +
SoPo Econometrics. (Part I today)

Multiple Regression and Omitted Variable Bias. Ch2 of MM pages 68-79.

Regression Inference, Binary Variables and Logarithms. Ch2 of MM, Appendix +
others.
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Regression as Line Fitting: Today's Goal

The goals of today's class are two:

1. Provide an explanation to what regression does when "it generate fitted values" (or "it
fits a line"), and

2. Provide some insight to a useful formula that represents the main coefficient of interest 
.

Today's class will be a bit more technical than previous classes.

For this reason it is important to always keep in mind what the goal is.

Even if you end up completely lost about today's material, these explanations are not
essential for you to do well in class.

(β)
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Regression as Line Fitting

Example: Class size and student performance (Slides adapted from SciencePo
Econometrics course, and data from Raj Chetty and Greg Bruich's course)
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Class size and student performance: Regression line

How to visually summarize the relationship: a line through the scatter plot

7 / 35



Class size and student performance: Regression line

How to visually summarize the relationship: a line through the scatter plot

8 / 35



It's All About the Residuals

In Regression as Matching we define the residuals, , as the difference between
the observed  and fitted values .

By fitted values, we mean a line (for now) that summarizes the relationship
between  and .

The equation for such a line with an intercept  and a slope  is:

ei

(Yi) (Ŷ i)

ei ≡ Yi − Ŷ i

X Y

a b

Ŷ i = a + bXi
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What's A Line: A Refresher
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Simple Linear Regression: Residual

If all the data points were on the line then .Ŷ i = Yi
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Simple Linear Regression: Graphically
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Simple Linear Regression: Graphically
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Ordinary Least Squares (OLS) Estimation

Errors of different sign  cancel out, so we consider squared residuals

Choose  such that  is as small as possible.

(+/−)

e2
i = (Yi − Ŷ i)

2 = (Yi − a − bXi)
2

(a, b) ∑N

i=1 e
2
1 + ⋯ + e2

N
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Ordinary Least Squares (OLS) Estimation

Intercept


Slope


Link
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Ordinary Least Squares (OLS) Estimation

Intercept

Slope

Link
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Covariance: Brief Explainer 1/2

The covariance is a measure of co-movement between two random variables 
:

With its sample counterpart (for the case of equally likely observations):

If either formula looks weird, think of the variance, as the covariance between 
and itself  and the above should look more familiar: 

(Xi,Yi)

Cov(Xi,Yi) = σXY = E[(Xi − E[Xi])(Yi − E[Yi])]

σ̂XY =
∑(Xi −

¯̄¯̄¯̄
Xi)(Yi −

¯̄¯̄¯
Yi)

n

Xi

(Xi)

σXX = E[(Xi − E[Xi])(Xi − E[Xi])] = E[(Xi − E[Xi])
2] = σ2

X
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Covariance: Brief Explainer 2/2

In addition to , we might use two other properties of the covariance:

If the expectation of either  or  is 0, the covariance between them is the
expectation of their product: 

The covariance linear functions of variables  and  -- written as 
and  for constants  -- is given by:

You are not asked to memorize any of these formulas. Just used them to
understand many concepts in regression.

σXX = σ2
X

Xi Yi

Cov(Xi,Yi) = E(XiYi)

Xi Yi Wi = c1 + c2Xi

Zi = c3 + c4Yi c1, c2, c3, c4

Cov(Wi,Zi) = c2c4Cov(Xi,Yi)
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Ordinary Least Squares (OLS): Coefficient Formulas 1/4

OLS: estimation method consisting in choosing  and  to minimize the sum of
squared residuals.

In the case of one regressor (and a constant), the result of this minimization
generates the following formulas: (derivation in this video and these slides).

So what are the formulas for  (intercept) and  (slope)?

We can solve this problem for the population or for random sample.

Warning: the next 3 slides are heavy on notation. If you lose track, the main
takeaway is that we want an intuitive formula for the solution to this problem.

a b

a b
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https://www.youtube.com/watch?v=Hi5EJnBHFB4
https://raw.githack.com/edrubin/EC421W19/master/LectureNotes/02Review/02_review.html#25


Population

Problem to solve:

Solution:

Sample

Problem to solve:

Solution:

Ordinary Least Squares (OLS): Coefficient Formulas 2/4

Let's bring the concept of Covariance to make this formulas more intuitive

arg min
a,b

{E[(Yi − a − bXi)
2]}

b = β =
E[(Xi − E[Xi])(Yi − E[Yi])]

E[(Xi − E[Xi])2]

a = α = E[Yi] − bE[Xi]

arg min
a,b
{∑(Yi − a − bXi)

2}

b = β̂ =
∑(Yi −

¯̄¯̄
Y )(Xi −

¯̄̄ ¯̄
X)

∑(Xi −
¯̄̄ ¯̄
X)2

a = α̂ =
¯̄¯̄
Y − b

¯̄̄ ¯̄
X
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Population Sample

Ordinary Least Squares (OLS): Coefficient Formulas 3/4

b = β = =
Cov(Xi,Yi)

V ar(Xi)

σXY

σ2
X

a = α = E[Yi] − bE[Xi]

b = β̂ =

∑(Yi−
¯̄¯̄
Y )(Xi−

¯̄̄ ¯̄
X)

n

∑(Xi−
¯̄̄ ¯̄
X)2

n

a = α̂ =
¯̄¯̄
Y − b

¯̄̄ ¯̄
X
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Population Sample

Ordinary Least Squares (OLS): Coefficient Formulas 3/4

b = =
Cov(Xi,Yi)

V ar(Xi)

σXY

σ2
X

a = α = E[Yi] − bE[Xi]

b = β̂ = =
Cov(Xi,Yi)

V ar(Xi)

σ̂XY

σ̂2
X

a = α̂ =
¯̄¯̄
Y − b

¯̄̄ ¯̄
X
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Ordinary Least Squares (OLS): Coefficient Formulas 4/4

The main takeaway:

b =
Cov(Xi,Yi)

V ar(Xi)
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Properties of Residuals 1/2

As we saw at the beginning of this class, in a regression the observed outcome 
can be separated into a component "explained" by the regression equation (aka
model) and a residual component:

Two important properties of the residuals:

1. They have expectation 0. 
2. They are uncorrelated with all the regressors that made them and with the

corresponding fitted values. For each regressor :

 and 

(Yi)

Yi = Ŷ i


fitted values (explained)

+ ei


residuals

E(ei) = 0

Xki

E[Xkiei] = 0 E[Ŷ iei] = 0
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Properties of Residuals 2/2

We take this properties as given in this course (they come from the calculus of the
minimization problem).

One important point is that this properties are true always (regardless of biased
coefficients).

This does not imply however that we have solve the problem selection bias.

In the traditional way of teaching econometrics this two concepts are mixed
(hence required a distinction between residuals  and unobservables ).(ei) (ui)
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# OLS regression of class size on average maths
lm(avgmath_cs ~ classize, grades_avg_cs)

#> 
#> Call:
#> lm(formula = avgmath_cs ~ classize, data = grade
#> 
#> Coefficients:
#> (Intercept)     classize  
#>     61.1092       0.1913

(OLS with R)

In R , OLS regressions are estimated using the lm  function.

This is how it works:

  lm(formula = dependent variable ~  independent variable)

Let's estimate the following model by OLS: average math scorei = a + bclass sizei + ei
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