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Regression Journey

e Regression as Matching on Groups. Ch2 of MM up to page 68 (not included).

e Regression as Line Fitting and Conditional Expectation. Ch2 of MM, Appendix +
SoPo Econometrics. (Part | today)

e Multiple Regression and Omitted Variable Bias. Ch2 of MM pages 68-79.

e Regression Inference, Binary Variables and Logarithms. Ch2 of MM, Appendix +
others.
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Regression as Line Fitting and Conditional Expectation
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Regression as Line Fitting: Today's Goal

e The goals of today's class are two:

1. Provide an explanation to what regression does when "it generate fitted values" (or "it
fits a line"), and

2. Provide some insight to a useful formula that represents the main coefficient of interest

(8)-
e Today's class will be a bit more technical than previous classes.
e For this reason it is important to always keep in mind what the goal Is.

e Even if you end up completely lost about today's material, these explanations are not
essential for you to do well in class.
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Regression as Line Fitting

e Example: Class size and student performance (Slides adapted from SciencePo
Econometrics course, and data from Raj Chetty and Greg Bruich's course)
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https://github.com/ScPoEcon/ScPoEconometrics-Slides
https://opportunityinsights.org/course/

Class size and student performance: Regression line

How to visually summarize the relationship: a line through the scatter plot
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Class size and student performance: Regression line

How to visually summarize the relationship: a line through the scatter plot
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It's All About the Residuals

e In Regression as Matching we define the residuals, e;, as the difference between
the observed (Y;) and fitted values (Y75).

AN

o By fitted values, we mean a line (for now) that summarizes the relationship
between X and Y.

e The equation for such a line with an intercept a and a slope b Is:
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What's A Line: A Refresher
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What's A Line: A Refresher
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Simple Linear Regression: Residual

e If all the data points were on the line then Y, =Y,
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Simple Linear Regression: Residual

e If all the data points were on the line then Y, =Y,
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Simple Linear Regression: Graphically
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Simple Linear Regression: Graphically
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Ordinary Least Squares (OLS) Estimation

e Errors of different sign (+/—) cancel out, so we consider squared residuals
el = (Y; - Y:)’ = (Yi —a— bX,)?
e Choose (a,b) such that Zﬁil el + -+ + €2 is as small as possible.
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Ordinary Least Squares (OLS) Estimation

Slope

Link
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https://gustavek.shinyapps.io/reg_simple/

Ordinary Least Squares (OLS) Estimation

Intercept

Slope

Link
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https://gustavek.shinyapps.io/SSR_cone/

Covariance: Brief Explainer 1/2

e The covariance Is a measure of co-movement between two random variables
(X, Y5):

Cov(X;,Y;) = oxy = E[(X; — E|X;])(Y; — E[Y;])]
o With its sample counterpart (for the case of equally likely observations):

> (X — X3)(Y; - Y5)

n

Oxy =

e |f either formula looks weird, think of the variance, as the covariance between X;
and itself (X;) and the above should look more familiar:
oxx = E[(X; — E[X;])(X; — E[X3])] = E[(X; — E[X;])?| = 0%
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Covariance: Brief Explainer 2/2

In addition to oxx = o3, we might use two other properties of the covariance:

o If the expectation of either X; orY; is 0, the covariance between them Is the
expectation of their product: Cov(X;,Y;) = E(X;Y;)

e The covariance linear functions of variables X; and Y; -- written as W; = ¢1 + c2 X
and Z; = ecg + c4Y; for constants ¢y, c2, c3, ¢4 -- 1S given by:

Cov(W;, Z;) = cocsCov(X;, Y;)

e You are not asked to memorize any of these formulas. Just used them to
understand many concepts in regression.
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Ordinary Least Squares (OLS): Coefficient Formulas 1/4

e OLS: estimation method consisting in choosing a and b to minimize the sum of
squared residuals.

e In the case of one regressor (and a constant), the result of this minimization
generates the following formulas: (derivation in this video and these slides).

e So what are the formulas for a (intercept) and b (slope)?
e We can solve this problem for the population or for random sample.

e Warning: the next 3 slides are heavy on notation. If you lose track, the main
takeaway Is that we want an intuitive formula for the solution to this problem.
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https://www.youtube.com/watch?v=Hi5EJnBHFB4
https://raw.githack.com/edrubin/EC421W19/master/LectureNotes/02Review/02_review.html#25

Ordinary Least Squares (OLS): Coefficient Formulas 2/4

Population Sample
Problem to solve: Problem to solve:
] ¢ —_— - . 2 °
arg Hallbn {E[(Y; — a — bX;)*] } arg Haubn {Z(Y’ —a— bXZ-)z}
Solution: Solution:

E[(X; — E[X:))(Y; — E[Yi]) R e =
E[(X; — E[X,])?] p— Wi V)i~ X)

> (Xi — X)?

a=a=Y —bX

b=f =

a=a=EY] - bE|X]]

e Let's bring the concept of Covariance to make this formulas more intuitive .



Ordinary Least Squares (OLS): Coefficient Formulas 3/4

Population Sample
b _ /B _ COU(Xi7 1/YZ) _ OXY R Z(Yz_?)(xz—)—()
Vars) - ox =P e

29 / 35



Ordinary Least Squares (OLS): Coefficient Formulas 3/4

Population Sample
b Cov(X;,Y;) oxy b— B — Cov(X;,Y;) Oxy
- Var(X;) 0% T Var(Xy) %

a=a=EY;] -bEX]] —a=Y —bX
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Ordinary Least Squares (OLS): Coefficient Formulas 4/4

e The main takeaway:

COU(Xia Yt&)
b =
VCLT(X@)
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Properties of Residuals 1/2

e As we saw at the beginning of this class, in a regression the observed outcome (Y;)
can be separated into a component "explained" by the regression equation (aka
model) and a residual component:

Y, = Y + €

~—~ ~~

1
fitted values (explained)  residuals

e Two important properties of the residuals:

1. They have expectation 0. E(e;) =0

2. They are uncorrelated with all the regressors that made them and with the
corresponding fitted values. For each regressor Xy;:
E[Xei] =0and E[Y;e;] =0
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Properties of Residuals 2/2

o We take this properties as given in this course (they come from the calculus of the
minimization problem).

e One important point is that this properties are true always (regardless of biased
coefficients).

e This does not imply however that we have solve the problem selection bias.

e In the traditional way of teaching econometrics this two concepts are mixed
(hence required a distinction between residuals (e;) and unobservables (u;)).
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(OLS with R)

e In R, OLS regressions are estimated using the 1m function.

e This Is how it works:

Im(formula = dependent variable ~ independent variable)

Let's estimate the following model by OLS: average math score; = a + bclass size; + e;

ImCavgmath _cs ~ classize, grades_avg cs)

#>
H>
#
H>
H>
#
H>

A\

A\

Call:
tm(formula =

Coefficilents:
(Intercept)
61.1092

avgmath_cs ~ classize, data

classize
0.1913

= grad
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