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Today's Lecture

Finish RCTs

Review of Statistical Inference

Standard deviation of the sample mean
Distribution of the sample mean
Distribution for the difference in means
Hypothesis testing
P-values
Confidence intervals
P-hacking
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Example #3: Orengon Health Plan (OHP) RCT 1/2

How about a population that is more relevant to current policy debates (in the
US)?
Expanding Medicaid leads to less costs? Does it improve health?
Oregon implemented an RCT unintentionally when they decided to expand
Medicaid to a broader population.
This expansion of the Oregon Health Plan (OHP) was later studied to learn about
use of medical services and health outcomes.
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Example #3: Orengon Health Plan (OHP) RCT 2/2

Year: 2008
Population:

Residents of Oregon
Under the poverty line and not eligible for Medicaid (non-disabled, non-
children, non-pregnant)

;  into an “invitation” treatment.n = 75, 000 30, 000
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Results from the OHP RCT
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Results from the OHP RCT
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First: not all who won the lottery got insurance. So the first thing to look at
is the effect of winning the lottery on getting insurance (Medicaid).
Second, the results show higher utilization of healthcare ss.
Problematically, one of the most expensive ones, like emergency visits.
After a couple of years since the invitation. It also shows improvements on
health, particularly on mental health.
Both the HIE and OHP suggest no causal effect of HI on physical health in
the short run. Both show more utilization. OHP shows improvements on
mental health and financial stability (also in the short run). Two, or more,
studies finding similar results are much more persuasive than any single
study showing a particular result.
One final issue with the second RCT is that not everybody who was invited
ended up receiving the most relevant treatment (HI). Hence the effect of
winning on utilization and health are basically pooling a bunch of zeros
for those invited that did not get HI, and a larger effect (both in emergency
use and in mental health) over those invited that did receive the health
insurance treatment. We will learn how to separate these two effects once
we study Regression and Instrumental Variables.

Results from the OHP RCT (Notes)
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RCTs: Final Considerations

Sometimes impractical

Sometimes unethical. The role of informed consent and freedom of participants.

Sometimes the most ethical option.

Always a good frame of reference to think about other research designs.
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Review of Statistical Inference
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How can we tell if this difference of
$198 is due to some observations
that happen to appear in our
random sample?
For example: maybe the HIE happen
to sample individuals from the
general population that are very high
spenders, and maybe, just due to
chance, those individuals were
assigned into the treatment group.

Let's Go Back To Some of the Difference in the HIE
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Summarizing Variability Due to Random Sampling: Standard Errors 1/6

Reminder: a random variable  has a sample variance :

Intuition for sample variance: average of squared deviations from its mean.

The population variance, or just variance :

Where  is defined as the population mean .

Both  and  represent fixed numbers (not variables).
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Summarizing Variability Due to Random Sampling: Standard Errors 2/6

We want to use statistical inference to say something about the sample mean 
, which is itself a random variable that sums a collection of random variables and
divides them by the population size.

Let’s start by giving it a name: the sampling variance.

Using independence, we can now derive formula for sampling variance.
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Summarizing Variability Due to Random Sampling: Standard Errors 3/6

Hence, the sampling variance (the variance of the sample mean) is equal to the
variance of the underlying data , divided by sample size .

To distinguish between the standard deviation of the sample mean , and the

standard deviation of the underlying data , we call the standard deviation of
the sample mean the standard error

In addition to sample mean, we will call standard error, any standard deviation of
a statistic that aggregates data.

(σ2) (n)

( )σ

√n

(σ)
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Important: I was wrong when implying
that MM gets confused about this, calling
the standard deviation of some statistics
“standard error” in the tables of Ch1, and
“standard deviation” other statistics.

For example, let's look at Table 1.1. The
standard deviation of square brackets
refers to the variation in the underlying
data. The standard deviations in
parentheses refer to variation in sample
means.

Summarizing Variability Due to Random Sampling: Standard Errors 4/6
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To make things clearer: they could have
also reported on the standard error of
the first sample mean. To do this we just
needed to take the standard deviation of
the underlying data (e.g., .93 for column
1) and divide it by the square roof of its
sample size .

Notice that the standard error goes to
zero as  grows, but not the standard
deviation of the underlying data

Summarizing Variability Due to Random Sampling: Standard Errors 5/6

( ) = 0.010.93

√(8,114)

n
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Summarizing Variability Due to Random Sampling: Standard Errors 6/6

Standard errors may be complicated but the idea is simple: they summarize variability in an estimate
due to sampling variability.

The standard error needs to be estimated, hence its estimated version is called… Estimated Standard
Errors

Usually we forget to say the “estimated part” but that is what we are measuring.

Beyond the names and their eternal confusions, the key idea that I want you to take away is that when
looking the sample mean (and other statistics later on) we need to remember that there are two types
of standard deviations in them: the standard deviation of the underlying data  and the standard
deviation of the sample mean, or any statistic that aggregates this data, called standard errors .

One does not shrink to zero as we have more information, the other does.

We have learned about the mean and standard deviation of the sample mean. But What about its
distribution?

(σ)
( )σ

√n
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Summarizing Variability Due to Random Sampling: Distribution 1/2

By the CLT, we know that the distribution of the sample mean  is normal with
mean  and standard deviation . Denoted as 

Let’s look again at the normal distribution in Seeing Theory. Particularly, how to
move from any  to a .

Hence, if we take the random variable  and substract its population mean, and
divide by its standard deviation, we have a :

(
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Y )

μ σ/√n N(μ, σ/√n)
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Y
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https://seeing-theory.brown.edu/probability-distributions/index.html#section2


Summarizing Variability Due to Random Sampling: Distribution 2/2

The reason we standarize, is that we know a lot about :

Most of its mass (probability) is between -1 and 1: ~70%
Between -2 and 2: ~95%
Between -3 and 3: ~99%.

The probability of observing any value in outside the range -2 to -2 is 5% (or 1 in
20).

The probability of observing a "3-sigma" event is 1%.

N(0, 1)
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Now For the Difference in Means 1/3

Everything we have done when characterizing  we can do to a difference of two sample

means: 
First, define its population mean as .
Compute its variance:

With its corresponding standard error (SE):
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Now For the Difference in Means 2/3

Analogous to the single sample mean, the SE can be estimated using the estimate
for the underlying standard deviation:

Where  is the standard deviation of all the underlying data (pooling  and 
 )

This difference in mean is also an average of (underlying) independent random
variables, so CLT applies and we have:
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Now For the Difference in Means 3/3

This distribution can also be standardized to obtain:

And again, this  has the same properties as above.
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Hypothesis Testing: Main Idea

We want to ask if the statistic we observe (  or  ) is consistent with
some underlying truth, represented by a theoretical distribution.

Our working hypothesis, or null hypothesis, is that this statistic does come from
such truth. Let's define the population mean of that theoretical distribution, as .

Assuming that our hypothesis is true, we can again standardize the statistic:

This is called the t-statistic for the null hypothesis  (given that in small samples
as a t-distribution, but in large sample is normal).
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One of the most common null hypothesis is
that of no effect , in this case the t-
statistic becomes the ratio of the estimate by
its standard error.

Remember that this statistic is distributed 
, now assume that we observe 

 what is the probability of
observing this statistic or something larger (in
absolute value), assuming that the null is true.

(Check out this great explanation on hypothesis
testing by Nick Huntington-Klein)

The p-value is the probability of observing a t-
statistic at least as extreme as the one we
observe, given that the hypothesis is true, is 

. So the statistic that we observe seems
to be consistent with our null hypothesis. More

Hypothesis Testing: P-value 1/2

(μ0 = 0)

N(0, 1)
t = −0.15

p = 0.88
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https://youtu.be/MsB46s7VqDM


But when does a t-statistic, and its
corresponding p-value, stops being consistent
with the null hypothesis?

A convention is that if the p-value should be
less than 0.05, then it is said to be statistically
significant.

This corresponds to a t-statistic of around 2 in
absolute value. Hence the rule of thumb of
dividing the estimate by its standard error anc
checking if its bigger than 2 in absolute value.

Hypothesis Testing: P-value 2/2
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